陈晓平:多种“随附性”概念及其关系——兼评金在权的随附性理论

选择字号:   本文共阅读 578 次 更新时间:2014-09-24 18:20:04

进入专题: 随附性   心-身问题   必然性   论域  

陈晓平(华南师大) (进入专栏)  

  

   摘要:“随附性”概念是戴维森最早用来刻画心理和物理之间的那种既依赖又独立的关系。金在权对随附性概念给出更为精确的表述,区分了三种随附性即弱随附性、强随附性和全总随附性,并证明强随附性和全总随附性是等价的。三年之后金在权修改了这一看法,认为强随附性强于全总随附性,而弱随附性与全总随附性是彼此独立的。本文指出,金在权关于弱随附性和全总随附性彼此独立的结论是错误的,而是强、弱和全总随附性的强度依次递减,后者依次被前者所蕴涵。本文还纠正了金在权关于强、弱随附性的表达式和论证中的一些不妥之处,进一步阐发了三种随附性之间的关系及其哲学意蕴,并将层次随附性、宏-微随附性和整-部随附性纳入这种关系之中。

  

   “随附性”(supervenience)概念与心-身问题密切相关,心-身问题涉及心智与身体之间的依赖关系。戴维森(D. Davidson)最早把心理对于物理的关系叫做“随附性”,[1]这个词是他从黑尔(R. M. Hare)那里借用过来的,黑尔在其1952年发表的《道德语言》中用“随附性”表示道德性质对于自然性质如行为之间的关系。在戴维森的“随附性”概念的基础上,金在权(Jaegwon Kim)在其力作《随附性的概念》中给以详尽的堪称经典的分析,揭示随附性的逻辑结构,进而区分了弱随附性、强随附性和全总随附性。本文是在金在权随附性理论的基础上进一步澄清诸多随附性概念的定义及其相互关系。

  

   一、强、弱随附性和全总随附性

   金在权在其《随附性概念》一文中讨论了三种随附性即弱随附性(weak supervenience)、强随附性(strong supervenience)和全总随附性(global supervenience),其定义分别如下。

   关于弱随附性的定义是:

   A弱随附于B,当且仅当:必然地,对于任何x和y,x和y在B类的所有性质上都是共同的,那么,x和y在A类的所有性质上也是共同的。——那就是说,相对于B的不可分辨性蕴涵相对于A的不可分辨性。[2]

   与其等价的另一表述是:

   A弱随附于B,当且仅当:必然地,对于任何x和A类的任何性质F,如果x具有F那么存在B类的一个性质G使得,x具有G并且对于任何y而言,如果y具有G那么y具有F。[3]

   关于强随附性的定义是:

   A强随附于B,当且仅当:必然地,对于任何x和A类的任何性质F,如果x具有F那么存在B类的一个性质G使得,x具有G并且必然地对于任何y而言,如果y具有G那么y具有F。[4]

   全总随附性的定义是:

   A全总随附于B,当且仅当,对于B是不可分辨(简称“B-不可分辨”)的诸世界对于A也是不可分辨的。[5]或者说,如果B性质在诸多世界中的整体分布上是相同的,那么A性质在这些世界中的整体分布也是相同的。

   给出这个定义之后,金在权便着手证明全总随附性与强随附性之间的等价性。然而,三年后他便在其他学者的批评下认识到,这个观点不成立,二者之间的关系应是:强随附性蕴涵全总随附性,但全总随附性并不蕴涵强随附性。这就是说,全总随附性弱于强随附性。皮特里(Bradford Petrie)为反驳金在权原先的等价性命题构造了以下反例。[6]

   考虑两个可能世界w1和w2,其中每个世界只含有两个个体a和b。在w1中,a具有性质G和F,b具有G。在w2中,a具有性质G但没有F,b没有G。这个情况也可表示如下:

   模型一

   w 1: Ga, Fa, Gb

   w2: Ga, ØFa, ØGb

   在这里,随附性质族A是{F},基础性质族B是{G}。由于a在这两个世界中具有相同基础性质G,但却在随附性质F上是不同的。这表明,“F强随附于G”对于这个模型是不成立的。但是这个模型并不表明“F全总随附于G”不成立。要想使全总随附性不成立,必须使这两个世界在G性质上相同而在F性质上不同。由于个体b在一个世界中有G而在另一个世界中无G,可见,这两个世界在B性质上并不相同,因此这一条件不被满足。这个模型使得,强随附性不成立而全总随附性未必不成立,这足以表明,全总随附性不蕴涵强随附性。

   全总随附性不蕴涵强随附性,这个结论的哲学涵义是什么?为了澄清这个问题,金在权沿着皮特里的思路进一步证明:全总随附性不蕴涵弱随附性。请看下面的例子:

   模型二

   w 1: Ga, Fa, Gb, ØFb

   w2: Ga, Fa, Gb, ØFb

   我们看到,在世界w 1中,a和b是G-不可分辨而F-可分辨的;在世界w2中同样如此。这表明,不仅“F强随附于G”不成立,而且“F弱随附于G”也不成立。然而,“F全总随附于G”却是成立的,既然这两个世界既是G-不可分辨的,也是F-不可分辨的;即G和F在这两个世界中的整体分布是完全相同的。[7]

   金在权在同一篇文章中未加证明地宣称:“既然弱随附性并不蕴涵全总随附性,那么,这两种关系是相互独立的。”[8]不过,给出这一证明是很容易的,只需对上面的那个模型稍加改动。请看下面的模型:

   模型三

   w 1: Ga, Fa, Gb, Fb

   w2: Ga, Fa, Gb, ØFb

   在w1中,a和b是G-不分辨的,而且是F-不可分辨的,这表明,“F弱随附于G”是成立的。由于在w2中,a和b是G-不可分辨的,但却是F-可分辨的,这表明,“F强随附于G”是不成立的。又由于这两个世界是G-不可分辨而F-可分辨的,所以,“F全总随附于G”也是不成立的。这表明,弱随附性不蕴涵全总随附性。

   既然全总随附性如此虚弱——就连弱随附性都不蕴涵,那全总随附性还有什么意义呢?金在权为此感到困惑,他说道:“或许这不是那种能够证明或否证的事情,但我认为它是很有道理的,即,把弱随附性看作最小必要条件,用以断言两类性质之间的决定性或依赖性。且不说两类性质之间联系的跨世界的稳定性;如果这些联系在一个世界之内都不成立——即那里有一些对象相对于给定性质是完全不可分辨的,然而相对于由这些性质决定或依赖于这些性质的那些性质却是可分辨的——那么很难看出关于存在真正的决定或依赖关系的断言还有什么意义。如果像心理对物理的全总随附性所允许的那样,存在这样一个人,他在物理的各个方面同你是不可分辨的,但却在心理生活上完全不同于你,甚至根本没有心理生活,那么关于心理依赖物理的断言如何可能被提出?”[9]

   金在权把弱随附性看作依赖关系或决定关系的底线,如果全总随附性连弱随附性都不蕴涵,它还有资格叫做“随附性”吗?但是,全总随附性至少初看上去是有意义的。问题出在哪里?我们有必要对随附性的意义底线做深入探讨。

  

   二、随附性的意义底线

   在上述对全总随附性作出修正的同一篇文章中,金在权对强随附性给出另一种表述,这一表述是由麦克劳林(Brian McLaughlin)首先提出的。具体如下:

   A强随附于B,当且仅当:对于任何世界wj和wk和任何对象x和y,如果x在wj具有y在wk所具有的相同的B-性质,那么,x在wj具有y在wk所具有的相同的A-性质。[10]

   将这个定义同前面关于弱随附性的第一个定义相比较,我们可以清楚地看到两种随附性的区别所在:弱随附性谈的是一个世界之内的关系,而强随附性谈的是跨世界的关系。对强随附性可以更为简捷地表述为:A强随附于B,当且仅当,相对于B的跨世界(cross-world)的不可分辨性蕴涵相对于A的跨世界的不可分辨性。

   不过,在笔者看来,这个关于强随附性的定义有所遗漏,即遗漏了一个“必然地”。前面关于强随附性的表述中包含两个“必然地”,而这个定义只包含由“跨世界”所表达的一种必然性。此外,金在权在这篇文章中把弱随附性仅仅看作关于一个世界的关系,这也是有所遗漏的,遗漏了弱随附性定义中的“必然地”所表达的跨世界关系。这两个遗漏关系重大,致使金在权对弱、强随附性同全总随附性之间关系的分析和论证有所不当。不过,关于随附性的必然性问题我们将放在后面讨论,现在我们所要做的是从随附性的跨世界定义来讨论随附性的意义底线。

   按照刚才给出的强随附性定义,我们可以得出这样的结论:如果没有一个x和y使得它们在wj和wk具有相同的B性质,那么,“A强随附于B”总是成立的。类似的结论也可从弱随附性的定义得出。显然,这种意义的随附性是无谓的甚至是荒唐的。为避免这种随附性,笔者的建议是规定论域。模态逻辑对论域的一般要求是:论域是一个非空世界集和一个非空个体域。在此基础上我们把论域分为两类,一类是多世界论域,另一类是单世界论域。对于多世界论域的特殊要求是:对于强随附性和弱随附性而言,至少有两个世界wj和wk使得,wj中至少有一个体x并且wk至少有一个体y,它们具有相同的基础性质。如果所谈诸多世界和个体不满足这一条件,谈论强或弱随附性是无意义的。这样,上面提到的那种随附性便被排除了;因为相对于我们所规定的论域,上面那种随附性不在论域之内,因而是无意义的。这一论域规定就是我们关于强和弱随附性相对于多世界论域的意义底线。

   然而,这种限制论域的方法还不能保证全总随附性具有意义,全总随附性要求被比较的两个世界wj和wk的基础性质B在总体分布上是相同的,否则谈论全总随附性就是无意义的。在满足这一要求的情况下,如果随附性质A在wj和wk的总体分布也是相同的,那么,“A全总随附于B”是真的(如前一节的模型二);反之是假的(如前一节的模型三)。为在多世界论域中避免无意义的全总随附性,对其论域的特殊规定是:至少有世界wj和wk使得,基础性质B对它们的总体分布是相同的。根据这个规定,对于在其基础性质的总体分布上不相同的两个世界,谈论全总随附性是无意义的。这一论域规定就是我们关于全总随附性相对于多世界论域的意义底线。

   接下来讨论单世界论域。单世界论域不涉及不同世界之间的横向比较,只涉及一个世界在时间进程中的纵向比较,也就是说,关于随附性的讨论不是着眼于不同世界的可辨别性,而是着眼于一个世界的变化性。这样,全总随附性命题断言:如果一个世界的基础性质B不变,那么它的随附性质A也不变。

相对于单世界论域,弱随附性和强随附性将合二为一,因为此时所面对的个体域是同一个,不妨将它们统称为“强-弱随附性”。强-弱随附性断定这个单一世界中的任何两个具有相同基础性质B的个体x和y具有相同的随附性质A。为使这一断定有意义,必须规定该世界中至少有两个个体具有相同的基础性质。这就是强-弱随附性相对于单世界论域的意义底线。(点击此处阅读下一页)

进入 陈晓平(华南师大) 的专栏     进入专题: 随附性   心-身问题   必然性   论域  

本文责编:川先生
发信站:爱思想(http://www.aisixiang.com),栏目:天益学术 > 哲学 > 外国哲学
本文链接:http://www.aisixiang.com/data/78256.html
文章来源:作者授权爱思想发布,转载请注明出处(http://www.aisixiang.com)。

2 推荐

在方框中输入电子邮件地址,多个邮件之间用半角逗号(,)分隔。

爱思想(aisixiang.com)网站为公益纯学术网站,旨在推动学术繁荣、塑造社会精神。
凡本网首发及经作者授权但非首发的所有作品,版权归作者本人所有。网络转载请注明作者、出处并保持完整,纸媒转载请经本网或作者本人书面授权。
凡本网注明“来源:XXX(非爱思想网)”的作品,均转载自其它媒体,转载目的在于分享信息、助推思想传播,并不代表本网赞同其观点和对其真实性负责。若作者或版权人不愿被使用,请来函指出,本网即予改正。
Powered by aisixiang.com Copyright © 2023 by aisixiang.com All Rights Reserved 爱思想 京ICP备12007865号-1 京公网安备11010602120014号.
工业和信息化部备案管理系统