季卫东:人工智能开发的理念、法律以及政策

选择字号:   本文共阅读 179 次 更新时间:2019-09-07 15:15:46

进入专题: 人工智能   社会治理  

季卫东 (进入专栏)  

  

   内容摘要:当人工智能因深度学习而从他律系统转化为自律系统,特别是在人工智能网络之间的相互作用及其连锁反应不断进行的情况下,黑箱化和失控的风险会不断增大。“透明社会”与“黑箱算法”,这是数据驱动社会的一对根本矛盾,对国家治理方式的改革提出了新的挑战和机遇。为此,如何对人工智能进行适当的、合理的、充分的规制,确立人工智能研发的规则、伦理以及政策就势必成为极其重要并非常紧迫的一项课题。国务院颁发的2017年《新一代人工智能发展规划》提出了人工智能发展的中国式制度安排以及九条主要原则,与国际社会已经形成的基本共识是相洽的;但在不同价值取向发生冲突时,怎样决定取舍的元规则和优先顺序还有待进一步明确。为了在甄别和防范风险的同时保护人工智能开发的积极性和创造性,有必要更多地采取软法方式,而不是简单地提高硬法的惩戒力度。

  

   关 键 词:数字驱动  风险社会  人工智能网络化  软法与硬法

  

序言:人工智能的网络化与互联互通


   “走的太快了,灵魂跟不上”——这是一个游牧部族的古训,也可以用来描述人工智能开发在中国突飞猛进却隐患频仍、局部失序的现状。

  

   从自动驾驶的汽车到机器人运营的酒店,从电脑量刑到高频度金融交易,人工智能已经渗透到经济、政治、社会生活的各个方面,各种新奇事物层出不穷。但是,对由此产生的风险以及必要的对策和规制方式,我们还缺乏足够的认识和深入研讨。人工智能的开发和利用大都还处于高速增长阶段,相关的制度条件尚不完备,在很多重要方面还没有制定明确的、适当的、统一的伦理标准、法律原则、规则、规格以及政策。我们不能让这样的事态长期持续下去,否则将留下严重的后患。2017年7月21日由国务院颁发的《新一代人工智能发展规划》已经指出研究相关法律问题和建立问责制度的必要性,提出了一些重要举措。当然,人工智能开发的具体规制方式和规范内容还有待进一步充实、完善。

  

   实际上,艾萨克·阿西莫夫早在1942年发表的科幻短篇小说《转圈跑》,就曾经提出了关于防止机器人失控的三大定律,即机器人不得伤害人或者对人受到伤害袖手旁观;机器人必须服从人的指令,除非该指令危害到人;在遵循上述两条定律的前提条件下,机器人必须保护自己。后来,为了避免允许机器人劫法场之类的逻辑漏洞,他在《机器人与帝国》又追加了一条零定律:“机器人不得加害于人类整体或者因为坐视危机而加害人类整体”。这些富于灵感和远见的主张为人工智能开发的规制展现了基本思路和雏形,对后来的制度设计产生了深刻影响,但却不能充分反映当今社会的崭新状况和需求。

  

   为了正确把握人工智能在全世界的发展趋势以及问题群,我们首先需要对产业革命的进程进行简单的回顾。

  

   迄今为止,人类社会经历了四次重大产业革命,采取了不同的基本生产方式。首先是机械化生产方式,由蒸汽机和纺织机的发明而启动,从18世纪后期持续到19世纪前期。其次是电气化生产方式,因电力和石油以及高度分工引发,从19世纪后期持续到20世纪前期。接着以产业机器人的研发为契机,从1960年代开始出现了自动化生产方式,其驱动力量是半导体、电脑以及互联网。就在这个阶段,人工智能的研究开始出现几经起伏的热潮。

  

   初级的人工智能只不过是装载了控制程序的家用电器,例如具有自动调节功能的洗衣机、冰箱以及电动剃须刀。较高级的人工智能则是装载了知识数据库的推理和探索系统,例如象棋程序、扫地机器人以及对话软件。更高级的人工智能搭载检索引擎,可以按照既定算法进行机械学习,包括各种实用的专家系统。现在我们通常所说的人工智能大多数就是指具有机械学习功能的计算机信息处理系统。

  

   至此我们迎来了大数据时代,新的产业革命条件也开始日渐成熟。自2000年代以来由万物互联互通、大数据、人工智能引发的智网化生产方式,可谓第四次产业革命。正在进行中的这次产业社会的结构转型是以数据驱动和人工智能网络化为基本特征的。其主要构成因素有如下三项。

  

   第一,物联网(简称IOT)。物联网导致数据的生成、流通、积蓄不断增大,并通过数据合作实现最合理化的供应链,可以针对顾客个人需求进行产品和服务的创新。

  

   第二,由物联网形成和积累而成的大数据。对物联网而言,大数据的收集和运用是关键,而大数据具有经济价值,甚至被认为是一种新型通货。大数据也使得个人生活状态变得非常透明化了,甚至可以说我们面对的是一个极端化的“透明社会”。

  

   第三,人工智能。没有人工智能,大数据的收集和运用都不可能实现,而基于大数据的机械学习和深度学习又给人工智能带来质变,可以不断开发新产品、新服务,并且大幅度提高效率和质量。

  

   这三种因素互相作用、相辅相成,推动人工智能网络化程度不断加深,促进现实空间与虚拟空间之间互动和反馈的关系不断增殖,形成一种具备控制力的信息实体交融系统(简称CPS)。在这样的背景下,以多伦多大学开发的图像识别系统Super Vision以及谷歌的猫脸识别项目为标志,人工智能也从2012年开始进入了能够自己进行“特征表现学习”(深度学习)的崭新时代,为历史性突破提供了重要契机。

  

   在人工智能的网络化和万物互联互通的时代,阿西莫夫关于防止机器人失控的三大定律和零定律就显得有些捉襟见肘了。从控制程序、知识数据库到检索引擎,人工智能都必须按照人给出的指令或算法来运行。在机械学习阶段,即便有非常庞大的数据,人工智能也不会自动学习,需要有人来提供数据的特征量和规格化方式才能进行学习和预测;通过机械学习,人工智能可以提供更高的精确度,但却很难对复杂的、模糊的问题进行判断。然而当机械学习的数据输入不间断地高速进行时,对输出的预测就会变得非常困难。而在深度学习的场合,人工智能系统不仅按照算法进行数据处理,还采取多层次脑神经网络的模型和方法,能从大数据中发现和提取特征量,揭示迄今为止未知的问题、样式、结构以及原理,从而具有更高的自主性,因而更类似具有条件反射能力的动物或者自由意志的人。

  

   当人工智能从他律系统转化为自律系统、从演绎系统转化为归纳系统,特别是在人工智能网络之间的相互作用及其连锁反应不断进行的情况下,预测、理解、验证、控制就会变得更加困难,甚至出现黑箱化现象。“透明社会”与“黑箱算法”,这是数据驱动时代的一对根本矛盾,对国家治理方式的改革提出了新的挑战和机遇。无论如何,既然人工智能有自我学习和创新的潜力,能通过统合复数的身体功能进行精密管理,还会按照某种节奏不断引起飞跃式的变化,甚至通过复杂的连锁反省造成混沌,那么如何对人工智能进行适当的、合理的、充分的规制,确立机器人研制的规则和政策就势必成为极其重要并非常紧迫的一项课题。

  

二、人工智能网络化的风险与社会治理


   在考虑对人工智能开发进行适当规制之前,必须对人工智能本身进行比较精准的概念界定。

  

   不言而喻,人工智能是相对于人类智能而言的,而人类的智能活动通常表现为推理、学习以及自我改善。因此,人工智能就可以理解为借助电子计算机来实现推理、学习以及自我改善等活动的机制。换言之,人工智能就是能够形成和运作这类活动机制的数据处理系统,或者像人那样思考的电子计算机。由此可以推论,人工智能的本质在于信息的输入与输出之间的关系。电子计算机擅长进行大量的、反复的信息处理和逻辑演算,但人类擅长进行直觉的分析和判断,通过与环境的相互作用创造出主观的世界图像,并依此进行认识和与预测。人工智能的发展目标就是要把这两个方面密切结合起来,提高认识和社会控制的精确度和实效性。

  

   目前的人工智能热是由深度学习——利用脑神经网络进行的机械学习——而引起的。过去五十年间的机械学习是由人根据专业知识和经验来设计算法和特征量,通过反复试错逐步提高电子计算机判断的精确度,失误比率一般在26%到27%之间徘徊。从2006年开始研发的深度学习,在2012年给这种持续已久的沉闷局面带来了重大突破,使得人工智能识别的失误比率骤然降到15%到16%的程度。深度学习的技术诀窍就是人类不再事先设计数据的特征量,而由电子计算机通过多阶脑神经网络模型下的分层化学习以及自我符号化的信息压缩器,从输入的数据中自动抽出数据的更高级特征量。也就是说,人工智能从此开始真正介入本来只能由人类智能决定的领域。如果从图像数据到观测数据、行动数据以及语言数据都可以进行深度学习,那就可以解决环境认识、行动预测以及知识获得瓶颈等问题,势必在很多领域引起科技和产业革命的连锁反应。

  

   深度学习的网络结构以及各种人工智能之间互相联网,形成了所谓“智网社会”,向国家治理和法律秩序提出了新的课题和挑战。人工智能的网络化的确可以为人类带来巨大的便利和效益,但同时也势必造成巨大的、缺乏清晰边界的风险社会。与过去的信息通讯技术不同,人工智能通过深度学习而导致变化的结果很可能是人工智能开发者自己也无法预测和控制的。人工智能网络化势必引起自动的组合变更,实现自我生成式的成长和变异乃至人工智能判断的黑箱化,形成非常复杂的情况和网络混沌。在这里,存在人工智能不透明化的风险、安全性风险、失控的风险等等。另外,各种人工智能网络相互间的目的竞争或冲突也会引起复杂的连锁反应,很可能在某种情形下造成利用者或者第三者的权利或利益受到损害,或者危及社会秩序和法律制度的框架。在这里存在事故的风险、智慧型犯罪的风险、个人信息和隐私被泄露和滥用的风险、人为操纵选举结果的风险等等。为此必须加强风险甄别和风险沟通。

  

如何对这类风险进行评价和管控成为人工智能网络化社会的治理以及制度设计的核心问题。众所周知,智网社会的最大特征是通过互联网实现的越境性,无论效益还是风险都会突破国家和专业领域的既有樊篱进行传递和呈指数级扩散。因此,对人工智能网络化的相关问题进行讨论、采取对策不得不具备国际视野和全球视野,应该注重在互联互通的状况里寻求人类社会的最大公约数和基本共识。另外,由于相关的技术创新和市场培育还处于初级阶段,特别需要积极鼓励试验和竞争,为了防止压抑研究者和企业的能动性,对人工智能开发的规制也应该富于弹性,给试行错误及其纠正留下充分的空间。在这样的条件设定下,如何使规制的举措产生实际效力、具有可持续性就自然而然成为另一个需要强调的因素。(点击此处阅读下一页)

进入 季卫东 的专栏     进入专题: 人工智能   社会治理  

本文责编:limei
发信站:爱思想(http://www.aisixiang.com),栏目:天益笔会 > 科学精神 > 科学评论
本文链接:http://www.aisixiang.com/data/118083.html
文章来源:《东方法学》2019年第5期

2 推荐

在方框中输入电子邮件地址,多个邮件之间用半角逗号(,)分隔。

爱思想(aisixiang.com)网站为公益纯学术网站,旨在推动学术繁荣、塑造社会精神。
凡本网首发及经作者授权但非首发的所有作品,版权归作者本人所有。网络转载请注明作者、出处并保持完整,纸媒转载请经本网或作者本人书面授权。
凡本网注明“来源:XXX(非爱思想网)”的作品,均转载自其它媒体,转载目的在于分享信息、助推思想传播,并不代表本网赞同其观点和对其真实性负责。若作者或版权人不愿被使用,请来函指出,本网即予改正。
Powered by aisixiang.com Copyright © 2019 by aisixiang.com All Rights Reserved 爱思想 京ICP备12007865号 京公网安备11010602120014号.
易康网