陈潭:大数据驱动社会治理的创新转向

选择字号:   本文共阅读 799 次 更新时间:2017-03-17 16:24:29

进入专题: 大数据   社会治理   国家治理  

陈潭 (进入专栏)  

  

   【摘要】大数据是推动时代发展和社会进步的重要战略引擎,是推进国家治理体系和治理能力现代化的重要战略资源,也是提升社会治理能力和水平的重要创新工具。大数据驱动社会治理创新不仅大大节约了社会治理的时间、资源和人力成本,而且建构了社会治理的新思路和新模式,实现了从封闭式管理走向开放式治理、从静态化管理走向流动性治理、从精细化管理走向精准化治理、从网格化管理走向网络化治理、从单向度管理走向协同化治理的路径转向。毫无疑问,大数据时代的社会治理创新为社会治理的供给和结构改革奠定了基础,对于推进国家治理现代化具有重要的战略意义。

  

   【关键词】大数据;社会治理;创新转向

  

  

   大数据、智能化、移动互联、云计算成为了驱动经济发展和社会转型的重要力量,“用数据说话、用数据决策、用数据管理、用数据创新”成为了公共管理和国家治理的重要原则。面对社会运行的复杂性和艰巨性,大数据驱动社会治理创新要求必须改变传统的治理思路和模式,必须对社会变化的风险实施预测和分析,必须建立监测灵敏的社会反应和治理体系。因此,开放式治理、流动性治理、精准化治理、网络化治理、协同化治理必然成为大数据时代社会治理的新常态。

  

   一、从封闭式管理走向开放式治理

  

   一直以来,中国长期存在着一种“民可使由之,不可使知之”的行政传统,将政府信息视作“秘密”而隔绝于普通民众之外。在这种行政传统中,政府是唯一的权力中心和行为主体,在政府内部形成了以官僚科层制为主体的政府及其职能部门,政治系统之外的利益集团即使参与政治也必须先输入由政府所把持的政策系统,历经如“黑箱”般的决策过程再转变为公共政策。如此,政府权力的封闭性和绝对性决定了政府在国家治理体系中所具有的垄断地位和“家长”角色,而这种地位与角色也极大地影响着决策质量、管理方式和治理能力。显然,公共决策系统的封闭式管理结构存在信息堵塞滞后、透明性缺乏、流动性不强、接收缓慢且缺乏有效的数据组织方式等问题而导致行政效率相对低下。

  

   大数据时代的来临对作为公共决策重要主体的政府组织在数据管理方面提出了更高的要求。大数据的出现颠覆了传统的数据管理方式,无论是在数据思维、数据来源还是数据处理方式方面都将带来革命性变化。【[1]】由于拥有了更加综合和全面的信息,过去那些建立在非公开、非完全信息假定基础上形成的相对闭塞的管理思维和方法将被彻底改变,国家治理领域将逐渐开放,企业、社会组织甚至公民个体都将在国家治理体系中游走。实现数据开放和共享在一定程度上破解了“制度黑箱”问题。在大数据、云计算、社会化媒体等全新信息技术的猛烈冲击下,原来存在于政府和公众之间的信息差、文化差、知识差、能力差正在逐步消除。因此,大数据不仅对传统的社会治理和公共管理带来了巨大挑战,也为国家、政府和社会的开放式治理提供了现实机遇。

  

   毋庸置疑,通过对大数据的集合和整理,政府决策的效率和科学统筹性将会明显提高。这是因为:第一,大数据用“全数据”取代了随机样本的“小数据”,其庞大、完整的数据库为高质量决策奠定了坚实的基础;第二,大数据推崇“一秒定律”,即强调对资料整合、数据输出、数据分析必须在瞬间完成,这有助于对问题情境进行即时判断;第三,大数据用简单算法代替小数据的复杂算法【[2]】,提高了对纷繁而多样化的数据来源的“容错能力”,更适应于具有高度复杂性和高度不确定性的社会治理情境,有助于决策者发现预期之外的新情况和新问题。大数据以“全体数据”为分析对象的特点,要求信息采集做到全方位、全时段、多元化,此意味着政府必须摆脱其作为绝对信息拥有者的身份,拓展信息挖掘、流通与反馈渠道。这不仅取决于政府主动打破信息壁垒,与社会分享信息权力的意识,取决于政府对提升信息管理能力和升级治理方案的决心与信心,更取决于政府对权力分享与增值形式的认知眼界。为此,大数据驱动社会治理走向开放性治理要求:

  

   首先,制定大数据管理标准,实施大数据开放与共享。大数据技术发展迅猛,为数据采集与共享提供了便利的同时也提高了数据保护的风险。尤其对于政府部门而言,其内部信息部分涉及国家安全与公民隐私,贸然开放则无法从技术上得到安全保障。并且,中国尚未有一部法律法规对大数据的管理做出明确规定,而对泄露国家机密的行为却处罚甚严,鉴于此,诸多部门都对大数据应用保持着高度戒备的态度。要想打破这样的局面,必须从两方面寻求突破,一方面要在现有的数据采集、分析、监管和防御技术水平基准上,重新制定数据密级标准,将不涉及国家机密和公民隐私的数据进行公开,并随数据管理水平的提升逐步加大开放力度;另一方面要不断升级数据管理的能力,培养一支专业化的数据管理和开发应用人才队伍,并定期对广大政府官员提供信息技术相关课程的培训。

  

   其次,消解数据壁垒和数据孤岛,构建整体性治理模式。长期以来,科层制政府都强调专业分工,各司其职。部门间的比较和竞争压力加剧了部门分化甚至分裂,切断了跨部门的合作与联系。各部门投入建设不同的信息系统,并视其为部门的独有资源。在信息共享的法规、机制与主体意识多方缺位的情况下,每个部门都是一座“信息孤岛”。信息的独占与封锁对决策的科学性、准确性和行政效率提升毫无裨益。因此,基于大数据的治理需要政府主动打破部门间的行政壁垒、信息封锁、数据封锁,不断整合长期分散于政府各个部门的数据资源,尤其是城市建设、交通管理、公共医疗、劳动就业、社会保险、社会救助、社区服务、质量监督等领域的数据直接与公共服务的质量相关联,更应当降低内部获取与流通的门槛,从碎片化的部门办公模式转向整体性的跨部门协作模式。

  

   最后,拓展数据挖掘和搜集能力,提升政务数据开放程度。政务数据开放程度不足一直是限制公民获得数据的最重要问题,不仅仅体现为信息开放内容有限,也表现在信息开放渠道太少、开放界面不够亲和等方面。打造透明的、开放的、高效的政府应当从拓宽信息开放渠道和提升办公界面的友好度着手。政府部门需要重新检视其门户网站办公界面的亲和性,建设多元化的信息开放平台,以提升办公界面的便利性和友好度为契机对政府内部的办公流程进行重新设计和改造。同时,大数据的开放和共享光靠政府一家远远不够,作为决策主体的政府需要主动培养与提升其他社会治理主体与普通公民采集和挖掘数据信息的能力。

  

   二、从静态化管理走向流动性治理

  

   长期以来,社会治理的政策和实践大多需要先试点=,在试点取得一定成效的情况下才能在全国范围内推广,各地方政府在可行性分析阶段也会借鉴与之级别、经济发展程度相当的其他地区的社会治理创新经验。这种依赖小数据的抽样“试点—推广”模式曾在相对稳定和相对简单的工业社会发展前期发挥过重要作用。在工业社会发展后期阶段,社会流动性和异质性大大加快,尤其是互联网技术的兴起更加加速了这一进程。互联网技术改变了信息的书写主体,将传统社会中专门赋予大众传媒的发布信息的权力分发到每一个互联网用户的手中;同时,也改变了公众接受资讯的时间,将传统社会中需要层层审核的信息以即时报道的方式推送到每一个互联网用户的终端上。这意味着人们每时每刻都置身于舆论与新闻的前沿,甚至舆情信息每分每秒都有可能改变。因此,后工业社会的治理变得高度复杂与高度不确定,以小规模抽样预判整体形势、以历史性经验推测当下状态的决策方式开始失去效力。而基于大数据驱动的循数型决策和流动性治理成为了替代小数据为样本的“试点—推广”治理模式的不二选择。

  

   大数据最显著的特点在于其“大”,这让它成为一项特别适用于流动性治理的工具。大数据的“大”首先体现在其规模和容量远远超出“传统数据”的测量尺度,一般的软件工具难以捕捉、存储、管理和分析的数据,通过大数据的云存储技术都能保存下来,形成浩瀚的数据海洋,目前的数据规模已经从TB级升级至PB级。大数据之“大”还表现在其采集范围和内容的丰富多变,能存入数据库的不仅包含各种具有规律性的数据符号,还囊括了各种如图片、视频、声音等非规则的数据。在大数据时代,“行动即数据”,个体任何一项微小的行动(比如点击鼠标、刷卡等)都会被编码,这些编码乍看之下杂乱无章,可结合编码的时间、地点、频率等数据,通过特定的复杂运算之后,其意义便能体现出来。因其惊人的存储和分析能力,大数据决策和流动性治理可以即时捕获的丰富数据,而无需再以“历史的”或者“邻居的”数据作为参考。

  

   大数据技术已经逐渐运用于流动性治理的各个环节中,并取得了不错的成效。例如,百度公司通过百度地图发现,相关地点的搜索请求数据和实际到达该地点的人群数量具有极高的相关性(相关系数大于0.9),意味着用户前往目的地前,一般都会提前利用百度地图规划路线。通过大数据分析发现,相关地点的地图搜索会先于实际人流量达到峰值。利用此特性,百度大数据可提前1-2小时对即将到来的风险进行预警,百度地图APP能够准确、清晰、高效地显示出高峰期堵塞最严重的交通路段,让驾车者有足够的时间做出反应、调整线路,从而节省出行时间安排、缓解交通压力、降低交通治安投入成本,大数据的应用有效突破了交通秩序管理瓶颈,避免如上海外滩踩踏事件一类悲剧的再次发生。为此,大数据驱动社会治理走向流动性治理要求:

  

   首先,善于运用大数据收集实时性信息。利用大数据的各种工具、搜集与分析各类信息数据,获取具有实时性、真实性的数据资料,准确把握社会形势,使得公共政策制定和执行更加具有针对性、可行性和操作性。例如,重庆市建设的基于大数据的电子车牌技术除了能及时支持交通管理外,还为公安机关采集办案信息700多万条。这些大数据应用提升了政府部门预防暴恐事件的能力,让暴恐分子成为光天化日下的“过街老鼠”。【[3]】

  

   其次,善于运用大数据开展适应性管理。现代社会发展的流动性、异质性和非均衡性要求政府必须改变管理理念、必须化主动为被动,才能更好地适应社会治理环境,提供优质的公共服务。适应性管理和流动性治理要求政府必须遵循“多疏少堵”原则,积极开展依法管理、开放式管理,寓管理于服务之中。同时,鼓励社会团体和个人积极参与到流动性治理之中,通过各种网络交流平台如政府网站和政务微信微博等表达意见和建议,使流动性治理既能及时实施、又能符合民意。

  

最后,善于规避大规模数据的流动性风险。虚拟社会治理某种程度上是“无政府的治理”,信息技术就是绝对权力。在虚拟社会中,个人信息普遍的数字化与网络化,各种资源、信息、资本在国际间的高速流动加速了风险传播,也增大了危机影响和社会治理难度:跨境电子商务使政府税收和对经济的管制变得越来越困难,逃税漏税、网络暴力、窃取商业秘密和私人信息等行为层出不穷。随着大数据的应用,以上诸多问题只会增多而不会减少,据此,政府更应加强在网络信息、舆情监控等公共领域对数据的应用和防范预警机制,(点击此处阅读下一页)

进入 陈潭 的专栏     进入专题: 大数据   社会治理   国家治理  

本文责编:川先生
发信站:爱思想(http://www.aisixiang.com),栏目:天益学术 > 政治学 > 公共政策与治理
本文链接:http://www.aisixiang.com/data/103611.html
文章来源:作者授权爱思想发布,转载请注明出处(http://www.aisixiang.com)。

0 推荐

在方框中输入电子邮件地址,多个邮件之间用半角逗号(,)分隔。

爱思想(aisixiang.com)网站为公益纯学术网站,旨在推动学术繁荣、塑造社会精神。
凡本网首发及经作者授权但非首发的所有作品,版权归作者本人所有。网络转载请注明作者、出处并保持完整,纸媒转载请经本网或作者本人书面授权。
凡本网注明“来源:XXX(非爱思想网)”的作品,均转载自其它媒体,转载目的在于分享信息、助推思想传播,并不代表本网赞同其观点和对其真实性负责。若作者或版权人不愿被使用,请来函指出,本网即予改正。
Powered by aisixiang.com Copyright © 2019 by aisixiang.com All Rights Reserved 爱思想 京ICP备12007865号 京公网安备11010602120014号.
易康网