张祥龙:塔斯基对于“真理”的定义及其意义

选择字号:   本文共阅读 1988 次 更新时间:2008-11-27 15:03:31

进入专题: 语言哲学  

张祥龙 (进入专栏)  

  

  波兰数学家、逻辑学家塔斯基(Alfred Tarski, 1902— )1933年在《形式化语言中的真理概念》一文中提出了一个对于“真理”(Truth)的语义学定义。它深刻地影响了当时的逻辑经验主义和后来的分析哲学的意义理论,并且导致理论语义学的正式建立。本文试图简单地评介建立这个定义的前因、方式及其后果。

  

  一、为何要从语义角度定义“真理”

  

   一般说来,语义学(semantics)是研究语言的表达式与这些表达式所涉及的对象(或事态)之的关系的学科。典型的语义概念是“指称”、“满足”、“定义”等等。“真理”这个概念的涵义是极其丰富而且多层次的,历史上对于它的讨论和定义无论从学科角度还是从思想流派的角度看,都是很多样的。但是,如果把它放到语言学系统中来讨论,那么将它作为一个语义学的概念,即作为某些语言表达式(比如陈述句)与其所谈及的对象之间的关系来处理,确实不失为一种简便自然而且容易精确化的讨论方法。

  然而,语义概念在学术史上的地位一直是不明确的或者说是很奇特的。一方面,这些概念深植于人们的语言活动中,要完整地表达思想尤其是有关认识论、方法论的观点,它们是必不可少的;另一方面,几乎所有要以普遍的和充分的方式来刻划它们的意义的努力都失败了。更糟糕的是,包含这些语义概念的论证,不管它们在别的情况下显得如何正确,却可能导致反论或悖论,比如说谎者悖论,因而使得许多人,包括早期逻辑经验主义的代表人物对它们极不信任,认为要前后一致地使用和定义它们是不可能的,在严格的科学中应该禁用这类概念。

  罗素1902年发现的关于集合的悖论不但导致了所谓数学基础的危机,而且引起了人们对于各种悖论的极大兴趣。罗素的工作表明,悖论并不是表达方式上的故弄玄虚,通过发现和解决悖论,可以更深刻地认识语言和各种表达系统的逻辑基础,甚至会促使一门新的科学或理论的建立。“应该强调指出,悖论对于建立现代演绎科学的基础起到了杰出的作用。正如类的理论方面的悖论、特别是罗素悖论(所有非自身分子的集的集的悖论)是在逻辑和数学的不矛盾形式化方面成功尝试的起点一样,说谎者悖论和其他语义悖论导致了理论语义学的建立。”[i]

  从另一个角度看,演绎科学本身的发展也提出了类似的要求。首先,是形式化公理方法的建立。欧几里德的《几何原本》可说是一个实质公理系统的例子,这一类公理系统的公理一般是表述某一类已事先给定的对象的直观自明的性质。但是,由于非欧几何的发现并且在欧氏几何中找到了它的模型,也就是说使它的真理性建立在了欧氏几何的真理性之上,使人们认识到对于空间特性的刻划可以有形式不同但具有真值联系的多个表达系统。[ii]

  另外,数理逻辑的建立使形式逻辑具有了某种意义上的“自身的规定性”(黑格尔常常批评旧形式逻辑缺少这种规定性)或一套自足的语法系统,逻辑推理不再仅仅是输送外来内容和真值的毫无本身意义的空洞框架;每个语句的真值都有着本系统内的根据甚至某种判定方法,并且出现了属于该系统本身的重要问题——一致性、完全性、公理的独立性等等,而这些问题都与形式化语言中的真理(或真值)问题密切相关。

  由于一开始对形式化公理系统的特性还认识不足,尤其是因为囿于休谟数学观的框框,对于演绎科学真理性的回答首先是形式主义的而不是语义学的。维特根斯坦仅仅依据命题演算的某些形式特点而认为所有的逻辑规则都是重言式,[iii] 其真理性在于它们是严格的同语反复,穷尽了一切可能,实际上“什么也没有说”。[iv] 这一片面看法极大地影响了早期逻辑经验主义的代表人物,如石里克、卡尔纳普。在数学界,这种倾向也体现在希尔伯特为代表的形式主义学派中,并随后导致了重大转变。为了在数学领域中完全消除产生悖论的根源,希尔伯特提出了著名的“希尔伯特方案”或证明论,即要将数学公理系统相对相容性(一致性)的证明(比如证明非欧几何相对于欧氏几何、欧氏几何相对于实数论、实数论相对于自然数论的相容性)变为绝对或直接相容性的证明;在这种把握“绝对”的证明活动中无法再利用任何一种还需要解释的推演工具,因此证明论中数学或逻辑公理系统的基本概念都应是无意义可言的符号,公理是这些符号的机械组合,无所谓真假,数学相容性的证明变为不需要内容的纯形式符号的推导,完全可以按一个机械的模式在有穷步内进行和完成。但是,在这个富于启发力的方案指导下工作的哥德尔,却发现了所有能包括形式数论在内的系统如果是相容的,则是不完全的,即总可以在它们中找到一个语义上真的句子,它和它的否定在本系统内都不可证;因此这类系统的相容性在本系统内是不可证的。而要去证明这一类系统相容性的元理论必不能比这些对象理论更简单,而是更强更复杂也就更“靠不住”。所以在纯形式的和有穷方法的前提下,数学系统绝对相容性的证明是不可能的。

  塔斯基就是在这样的背景下(与哥德尔几乎同时)从理论语义学或逻辑语义学角度回答了演绎科学基础研究中提出的这样一些问题。哥德尔不完全性定理发表于1931年,塔斯基关于真理定义的主要思想于1929年已完成,并于1930年在波兰做了学术演讲。《形式化语言中的真理概念》这篇论文于1931年3月由卢卡西维兹送交华沙的科学学会,但由于外部原因使出版拖到1933年,这也使得塔斯基可以借鉴哥德尔的成果并对这篇论文做了部分补充和修改。[v]

  

  二、怎样定义语义的“真”

  

   1.悖论与语言层次

  

  从边沁(1748-1832)起,不再将词而是将句子作为意义的基本单位。弗雷格则认为一个句子的意义就在于它的真值条件或成真条件;正因为如此,句子和组成它的词才有了可传达的客观意义,而不仅仅是洛克等人所讲的带有主观经验色彩的“观念”。塔斯基为了避免心理因素的影响和表达歧义,就将他的真理定义的对象规定为语言系统中的语句,更严格地说,是陈述句。

  他以亚里士多德的真理定义为讨论起点。“我们希望我们的定义与经典的亚里士多德的真理概念所包含的直觉尽可能地相似——即在亚里士多德《形而上学》一书里这段著名的话中所表达的直觉:‘将所是的[或所存在的]说成不是的[或不存在的],或将所不是的说成是的,是假的;而将所是的说成是的,或所不是的说成不是的,是真的。’”[vi] 根据这个定义,“雪是白的”这个语句的真值条件就是:如果雪是白的,此语句就是真的;如果雪不是白的,此语句就是假的。因而下面这个等式成立:

  语句“雪是白的”是真的,当且仅当,雪是白的。

  将它一般化,即得到一个(T)等式:

  (T) X是真的,当且仅当,P。

   在此式中,P代表“真的”这个词所涉及的语言中的任何一个语句,X则代表这个语句的名称。

  但是,塔斯基认为亚氏的这个定义尽管在直觉上是对的,但是它的表达形式有严重问题。我们可以在不违反其形式的前提下构造一个类似说谎者悖论的语言:

  印在本页这一行上的这个语句是不真的。

  当我们问“这句话是真还是假”时,矛盾就出现了;因为从其肯定可以得出其否定,从其否定又可得其肯定,因此它是一个悖论。

  经过分析,塔斯基认为毛病出在可以构造出这类语句的语言系统上。这类语言系统不但包含了它的表达式,而且包含了这些表达式的名称和象“真的”这样的语义学词项,尤其是它能够不受限制地把这样的语义学词项用于其中的任何一个语句;简言之,这样的语言系统具有在内部断定自己语句的真值的能力,塔斯基称之为“语义上封闭的语言”。自然语言也属于这种语言。

  因此,为了保证语义概念在使用中的一致性,去掉产生悖论的根源,在讨论真理定义或任何语义学问题时,必须禁用这类语义上封闭的语言,而用不同功能的两种语言来代替:第一种是被谈及的作为讨论对象的语言,称为对象语言,第二种是谈及第一种语言的语言,称为元语言。我们就是用元语言来为对象语言构造“真语句”的定义。元语言中不但要有对象语言的所有表达式的名称,而且还有对象语言所没有的语义学的词项,所以元语言比对象语言从本质上更丰富,也可以说,元语言中包含有更高逻辑类型的变项。因而对象语言可以在元语言中得到解释,但元语言不能在对象语言中得到解释。塔斯基已证明,这样一种“本质上的[更]丰富性”对于构造满意的真理定义是一个必要而且充分的条件。[vii] 元语言可以分为两种:句法(syntax)元语言和语义元语方。只谈及对象语言的语言表达式的元语言称为句法元语言,比如一般逻辑教科书上谈到某个演绎系统的语法部分(原始符号、形成规则、变形规则等等)的语言;不仅涉及对象语言的语言表达式,而且谈及这些表达式所涉及的对象的元语言称为语义元语言,比如谈到某个演绎系统的语义部分(真假、可满足、普遍有效等等)的语言。[viii] 作为构造这样两种语言的两个著名例子,我们可以举出卡尔纳普的《语言的逻辑句法》(1934年)和塔斯基的《形式化语言中的真理概念》(1933年)。

  

  2.真理定义所要求满足的条件——形式上正确、实质上充分

  

  塔斯基认为,为了保证定义在形式上的正确,除了区分对象语言和元语言之外,还必须说明这两种语言的结构,即将这两种语言都形式化和公理化,保证其中每一个表达式的意义从其形式上就可以被唯一地确定。所以,塔斯基认为要在自然语言中正确地定义真理是不可能的。

  对于元语言还需多做一些说明:元语言的基本词项除了一般的逻辑词项和与对象语言的词项意义相同的词项之外,还要有从形式结构上描述对象语言的所有表达式及其关系的词项,以使我们有能力在任何情况下为对象语言的任一个表达式构造元语言的名称。自然,元语言的公理也要相应地反映出这三类词项的性质。此外塔斯基对于元语言还有另一个更带有哲学含义的要求,即“(涉及对象语言的)语义学词项只能经过定义而被引入元语言中”。[ix] “在这个构造中,我将不使用任何不能事先被归约为其他概念的语义概念”。[x] 他希望通过在元语言中构造这个定义,能够把以前一直含混不清的“真理”或“真语句”概念“归约为纯粹的逻辑概念、被考察的语言的概念和语言形态学的特殊概念”。[xi] 也就是说,归约为任何逻辑学家和分析哲学家也都要承认的在逻辑上形式上完全站得住的那些概念,从而证明语义概念可以像那些“分析的”概念一样毫无矛盾地使用,语义学可以成为语言形态学(the morphology of language)的一部分。

  对于真理定义的另一个条件是要求它是“实质上充分的”(materially adequate),,即涉及某个对象语言的所有(T)等式都要作为这个定义的结果而被推衍出。[xii] 在这些出现在元语言中的格式为“X是真的,当且仅当,P”的(T)等式中,“P”代表对象语言中任何一个已被翻译到元语言中的语句,“X”则代表这个语句的名称。

  为什么要提出这个条件呢?首先,既然这个定义要把语义概念归约为非语义概念,那么就必须在语义概念可能出现的一切场合都有办法把包含这类概念的语句置换为不包含语义概念的语句,即穷尽被定义概念(如“真”、“满足”)的一切可能的情况。其次,是为了回答演绎科学特别是证明论中提出来的“可证性”与“真理性”的关系以及“排中律”是否成立等问题。一般人的直觉很容易接受这样一个古典排中律式的看法:任何一句话或者说一个判断不是真的就是假的(即它的否定是真的)。且不管所谓“形而上学”,就是在数学中也有一些命题或判断的本身被证明是无解的,而且“说谎者悖论”一类的命题对这种信念更是严重的威胁。于是实证主义者和有穷主义者出来说:根本不存在这类柏拉图式的从本体论上就保证了的理念的“真”,或者更进一步,也根本不存在康德式的从认识论上被保证了的有先天综合能力的范畴的“真”或感性直观的纯形式的“真”,而只有所谓“证实的真”或“分析的真”。这种倾向由于数学基础中悖论的发现而得到加强并在直观主义[xiii] 学派的有穷主义中达到极点;他们认为真正的数学命题只存在于有穷构造中,因而拒绝使用涉及到“实无穷”的排中律。他们这种看法得到F.考夫曼和维特根斯坦等人的赞同,希尔伯特虽然出于保护一大批数学成果的目的反对直观主义排斥排中律的主张,但在很大程度上也受到悖论的发现和这种从某一方面看来很合理的主张的影响,(点击此处阅读下一页)

进入 张祥龙 的专栏     进入专题: 语言哲学  

本文责编:jiangxiangling
发信站:爱思想(http://www.aisixiang.com),栏目:天益学术 > 哲学 > 外国哲学
本文链接:http://www.aisixiang.com/data/22657.html
文章来源:原载于1986年出版的《外国哲学》第8辑(商务印书馆)

0 推荐

在方框中输入电子邮件地址,多个邮件之间用半角逗号(,)分隔。

爱思想(aisixiang.com)网站为公益纯学术网站,旨在推动学术繁荣、塑造社会精神。
凡本网首发及经作者授权但非首发的所有作品,版权归作者本人所有。网络转载请注明作者、出处并保持完整,纸媒转载请经本网或作者本人书面授权。
凡本网注明“来源:XXX(非爱思想网)”的作品,均转载自其它媒体,转载目的在于分享信息、助推思想传播,并不代表本网赞同其观点和对其真实性负责。若作者或版权人不愿被使用,请来函指出,本网即予改正。
Powered by aisixiang.com Copyright © 2022 by aisixiang.com All Rights Reserved 爱思想 京ICP备12007865号-1 京公网安备11010602120014号.
工业和信息化部备案管理系统