余盛峰:法律的“死亡”:人工智能时代的法律功能危机

选择字号:   本文共阅读 1446 次 更新时间:2018-04-14 15:45:15

进入专题: 人工智能   区块链   法律功能  

余盛峰 (进入专栏)  
只是尽力在规范一致性、司法确定性和处理结果可接受性这些矛盾要求之间寻求平衡。实际上,法律社会科学化所要应对的核心问题,就是法律不学习和学习之间存在的深刻悖论。  

   当前正在发展的计算法学,建立在智能学习技术以及将自然法律语言全面人工化的技术意识形态。[xxvii]可以说,计算法学将是法律社会科学发展的终极版本。从其背景而言,整个社会的计算能力的过剩,消解了过去由计算力稀缺所带来的全面深度学习的难题。由于计算力过剩和冗余的不断加剧,法律计算化的技术冲动会不断侵蚀传统法律的规范主义地带。在此背景下,富勒描绘的作为法律内在道德的一系列指标性特征都会遭遇挑战。[xxviii]换言之,传统法律只是一种简约而粗糙的算法(典型如《法国民法典》),它虽然为避免决疑主义而提高了化约的效率,但也因此无法做到精细。在实践中,那些“有待填空”的法律条款给执法者和法官留下来广大的裁量空间,由此带来的专断或腐败颇受诟病。那么,当人工智能和计算科学的发展使计算能力不再稀缺,当算法比不学习的法律能以更为低廉的成本,更为高效、精确和灵捷地实现各种治理目标,就势必会推动作为法律的算法的全面兴起,与此对应,作为算法的法律则会开始衰退。

   (二)法律空间的多极化与平行化  

   现代法律主要围绕主权空间展开,它依循政治国家和市场社会的二元空间建构公法与私法体系,在此结构下,国际法和家庭法的特殊性就在于主权空间与其空间关系的暧昧性。也就是说,现代法律的空间结构是依托国家公权力的宪法空间效力辐射实现的。这也正是法律不学习背后的主权保障机制。但是机器学习的技术发展将会推动法律与主权的脱嵌化趋势。法律不再完全依靠由国家主权保障来实现其不学习的规范化机制,法律的去主权化,完全可以依托各种学习性、去中心、分布式的数字技术实现。换言之,一系列算法机制会不断催生出各种类型的“私人订制”的法律。法律不再只是主权威慑下令人“不敢”违法的形象,同时还会包括由各种代码实现的“不能”违法、由各种算法实现的“不用”违法的现象。例如针对个体的法律诊疗、行为矫正、制裁和惩罚,针对特定公司的特定规制,针对不同个体的侵权保险机制,等等。以往,不学习的现代法律天然反对歧视(discrimination),而法律学习化则首先会诉诸于更为精密的区别对待(discrimination)技术。也就是说,现代的法律不学习根据统一的权利和行为能力建立了平等对待和尊重的反歧视性标准。这些反歧视标准不管是基于古典自由主义的占有性个人主义,还是德沃金式的平等关怀与尊重的理念,在机器学习的视角下,它们都会褪去神圣性的光环,而被视为只是在计算力和学习能力孱弱的背景下,解决社会矛盾和纠纷的一种相对低成本和低效率的工具。

   法律不学习依托于由国家暴力机器支持的主权空间(合法化的不学习),借助于惩罚的威慑,霍布斯的利维坦设想就是希望将现代世界的复杂性化约集中到中心化的政治主权和法律规范维度解决,通过绝对主权的建立,特别是暴力手段的合法化垄断,通过不学习的法律来化约世界的复杂性。而机器学习则依赖于技术的智能反馈机制,其规制是自主执行的。由于这个原因,现实空间和虚拟空间将会遵循两种完全不同的规制及其正当化机制。而伴随着虚拟世界的进一步分化,围绕着现实和虚拟的多个平行世界展开的“主权性”冲突将会不断升级。现代法律的不学习主要通过政治民主的可问责性获得正当化,而当法律不断被代码/算法替代,逐渐被黑箱化的算法/代码规制取代,民主机制也会伴随现实法律空间的瓦解失去用武之地。现代法律通过民主化机制使其不学习的面向得到公共商议的平衡,不同利益和价值通过政治商议予以讨论和修正,主体间的民主商议确定了社会交往的基本规则。而“学习性”的代码/算法机制,相反则可能依据某种偏狭的技术或价值理性,受控于缺乏民主机制过滤的治理、资本和技术逻辑,从而使其走向实质的“不学习”。而与民主性相关的一系列现代法律价值,诸如公开性、确定性、明确性、统一性、可知性等,都会跟随民主一起在虚拟世界空间面临解构的危险。

   更进一步,机器学习的演化,还会继续瓦解主权国家对法律规范性的垄断,因为,机器算法本身无法被主权垄断。相反,它可以被不同的技术平台占有,主权算法因此会不断被各种机器算法取代。这也就意味着“法将不法”或“多龙治法”的现象会持续涌现。在此过程中,传统的公法-私法二元框架,就会伴随国家-市场-技术架构的深刻转变而蜕变,以主权国家为空间平台的规范化机制,将被各种新的跨国家、超国家、亚国家、区域性、平台性、私人性、随机性、部落化、区块化的空间算法机制取代。

   更大的问题还在于,我们过去所熟悉的法律,都是在一个统一的“现实世界”的想象中创建的,而当虚拟和现实的空间界限被打破,当世界的“多极化”趋势加速,当多元的世界之间不再有一个具有压倒性的政治空间拥有最终的决断权,这就会给法律的权威带来根本的挑战。由于失去了一个统一化的政治和法律空间,我们很难再对不同空间的秩序构建做出一致性的协调和安排,从而就会陷入一种丧失价值衡平的“碎片化”治理。在传统法上当然也存在“主权”的冲突问题,但是,国际空间距离的缓冲,法律冲突在时间上的错开和延迟,这使冲突能够比较有效地在“国际法”维度下处置。但是,新的“主权性”冲突将失去这些缓冲保护,由于人已不可避免地同时生活在这些实时连接的不同世界,“法律身份”将变得空前多元、模糊和充满张力。空间上,一方面是规制自然世界的“物法”,一方面是规制社会世界的“人法”,又同时是一个规制正在崛起的人工世界的“网络信息法”。这种多重平行的世界社会的空间结构又镶嵌在一个由主权、亚主权、超主权和跨主权构成的传统法律空间中,这同时激化了在此种平行法律空间结构中生成的时间意识的复杂性。

   (三)法律时间的倒置与映射

   法律从一种不学习的自治型法向一种学习的反身型法转变,首先就会带来法律时间观念的革命。如果说,古代法是从过去到当下的涵摄,现代法是由现在指向未来的规范,那么学习性法律则会实现从未来到当下的映射。因为,基于机器学习的法律规制,它虽然也会基于过去的规则和判例,但更多会趋于面向未来、预测未来和引导未来。这种时间意识的转变会从根本上改变法律的不学习特征,也会进一步升级实用主义和后果主义导向的法律范式。进而言之,法律不会只是从基于过去和规范主义的时间视野向未来和后果主义的视野转变,而将是一种从当下的未来到未来的当下之时间意识的根本转变。这是一种依托于信息主义范式的人工社会世界或者说平行虚拟世界兴起所带来的时间意识的蜕变。空间结构和时间意识的变化会形成相互激荡之势。上述多重平行世界的空间交错,会不断推动法律从依据过去来稳定当下从而规范未来的时间技术,转变为一种依据想象的未来或者预测性的模拟仿真来引导当下从而重构历史的规制模式。

   (四)财产形态的转变:从物的所有权到财产的可进入

   正如从物权中心到债权中心的演变,核心生产资料从土地、矿产和劳动力向算力、智力和数据的转变,主要产权对象从有形物质向无形信息的转移,都提供了法律对财产更为灵活操作的基础。传统法律之所以不学习,部分源于物权变动天然受制于不动产的不可移动性以及动产移转的安全性问题。财产不是处于真空之中而是深深嵌于自然与社会网络,因此以往只能用一种相对静态的规范化机制来维持财产的安全性。而信息作为一种财产,则可以被抽离出具体自然和社会的语境,摆脱有体物稀缺性的限制而自由增殖和流动。近代实证法的兴起因应于资本主义条件下财产流动性的极大增强,但它仍然主要围绕于以土地和劳动力为主的生产性资本形态,实证法的学习性因此只能被固定于不学习的规范化机制。而财产的信息化、知识化和虚拟化,则为法律的学习化、代码化和算法化提供了基础性的社会经济条件。财产不再内嵌于社会网络,而是从属于一个以货币为代码的经济系统,从属于一个以代码为中心的可以虚拟化操作的技术系统。这些提供了作为上层建筑的法律进行学习化转型的经济和技术基础条件。作为物的所有权(ownership),开始被作为财产(property作为某种属性/性质,而不是实体)的进入(access)所取代。由所有权的“不可侵犯”所促成的法律不学习,现在开始被作为财产权的“可进入”所推动的法律学习取代。法律经济学正是法律和产权由不学习向学习性转变在法理学上的典型呈现。

   (五)无需法律的信任:从人格信任到制度信任再到机器信任

   伴随着人类文明发展,世界的复杂性不断增强,它不再是一个预先被确定和规范的结构,这对信任提出了严峻的挑战。法律首要解决的其实正是信任问题,它以不学习的方式来化约世界复杂性,将其压缩为按规范性逻辑来定位的形式,由此来限制各种风险,并确保信用的稳定。信任因此是一种社会关系,而社会关系的建立则依赖于特定的规则体系,这些规则体系作为制度中介,通过法律人格、意思自治、主观要件、法律责任等一系列概念,使信任在法律符号上变得可操作化。因此,在交易合同的签订过程中,其实不是信任在发挥作用,而是法律对信任在规范上的重新诠释和强化,法律及其制裁机制有效地塑造了交易者的动机,从而使交易过程摆脱了对于特定对象的信任。

   古代的法律不学习是将某些禁忌和规范设定为神圣不可侵犯,借此来塑造期望的结构和动机的模式,从而支持信任的生产。而在进入现代社会之后,则更多是通过抽象的制度来提供这种功能,除了法律之外,货币、科学也扮演类似角色,这些抽象制度使信任脱离了特定的人格,从而使社会信任可以依靠抽象制度生成。[xxix]它使信任变成了一种系统性的反馈机制,使人格信任转变成了系统信任。这种抽象的系统信任,不再去学习具体的语境来吸收风险,而是将其加以普遍化处理,从而解决了每事都必重新建立信任的难题,这为期望的稳定提供了确定性,为社会合作在更为复杂的维度展开提供了机会。而法律信任的特征又区别于诸如货币或科学信任,因为它是中心式的,通过建立各种科层化的政治和法律组织,使信任的建构过程集中化,根据事先确定的规则来激活强制手段,并且在必要的时候诉诸于暴力。

   传统信用附着于特定的制度结构,特别是法律制度,通过不学习的法律可以简化人际交往的不确定性,并担保信用的稳定。正是因此,各种法律制度特别是民商事法律都包含“诚信”条款(罗马法上的Fiducia)。而机器学习的发展,则使信任既不再需要基于人格,也不再基于制度,甚至是不再需要信任本身。在过去,主要是基于各种法律制度来提供信任的框架,它们通过一系列仪式、手续、步骤、条款、程序、制裁来建立信任的框架,由于交易无法克服时间的不同步问题,要约和承诺的兑现无法同时完成,因此特别需要法律以规范化的方式,来解决这种由时间延迟带来的信息不对称问题。因此,只要是主权领土范围内的国民成员,他就必须承认和接受官方法律提供的信任担保。但是,学习性的代码/算法的发展,则使法律违约在技术上就变得不能或不用,从而可以通过智能算法来即时性地解决或直接取消信任问题。

传统信用依靠法律、道德、组织等中心型权威的背书来提供,需要建立各种冗杂的官僚体系,需要各种耗费成本和人力的考核、评估、征信与公证机制。而现在,信用不再是简单的关于某个个人良好行为或声誉的规范性评价,而是成了越来越细而无所不包的与事实相关的数据挖掘和概率统计。此时,更多的是需要机器学习来形成征信和计算,法律保障信用生产的规范功能也就被边缘化。在更为复杂和动态的社会中,社会信用不再是一个客观的常量,而是社会沟通在环境条件的约束下,所达成的一种暂时的准平衡态,对于这种平衡态无法套用一个固定的规则,而更需要一种概率论和统计学意义上的“行为的语法”。(点击此处阅读下一页)

进入 余盛峰 的专栏     进入专题: 人工智能   区块链   法律功能  

本文责编:陈冬冬
发信站:爱思想(http://www.aisixiang.com),栏目:天益学术 > 法学 > 理论法学
本文链接:http://www.aisixiang.com/data/109455.html
文章来源:《华东政法大学学报》2018年第2期

0 推荐

在方框中输入电子邮件地址,多个邮件之间用半角逗号(,)分隔。

爱思想(aisixiang.com)网站为公益纯学术网站,旨在推动学术繁荣、塑造社会精神。
凡本网首发及经作者授权但非首发的所有作品,版权归作者本人所有。网络转载请注明作者、出处并保持完整,纸媒转载请经本网或作者本人书面授权。
凡本网注明“来源:XXX(非爱思想网)”的作品,均转载自其它媒体,转载目的在于分享信息、助推思想传播,并不代表本网赞同其观点和对其真实性负责。若作者或版权人不愿被使用,请来函指出,本网即予改正。
Powered by aisixiang.com Copyright © 2021 by aisixiang.com All Rights Reserved 爱思想 京ICP备12007865号-1 京公网安备11010602120014号.
工业和信息化部备案管理系统