左卫民:关于法律人工智能在中国运用前景的若干思考

选择字号:   本文共阅读 2114 次 更新时间:2018-05-10 02:35:24

进入专题: 法律人工智能   法律数据  

左卫民  
因为即使公布深度学习的所有代码与程式,也无法预知算法如何以及为何得出相应的结果,因此,未来需要在对现有算法进一步开源的基础上,探索与使用更为契合中国实践需要的新的算法。此外,算法的透明还需要从基础数据做起,即从对法律裁判文书中简单要素的标注向疑难、复杂要素的标注迈进。最后,注意算法的歧视性。算法带有歧视性,这已是不争的事实,比如有犯罪前科的主体在算法预测量刑时会陷入更为不利的境地。“对过去有偏见的数据进行未经仔细考虑的算法系统本来就有可能重新创造甚至加剧过去决策过程中出现的歧视。”[52]因此,应当注意和算法中可能存在的偏见及其潜在危害。这就要求我们认识到人工智能得出的判断可能存在错误,需要人的理性判断与解读。

   第二,人才的培养与融合。从某种意义上讲,法律人与技术人的结合程度决定法律人工智能的运用深度。但正如前文所指出的那样,我们目前既没有“人工”,更没有好“人工”,又怎么会生产出好的“人工智能”呢?特别是当机器学习者被要求对新知数据进行分类时,分类设计必然会引入一些归纳偏见,即机器学习者在“清洗”数据时,设计何种假设及验证都不可避免地存在偏差。如果由法律专业人士进行或指导计算机专业人才完成上述工作,或许可以将偏差降至最低,但如果没有法律专业人士参与其间,偏差可能将无法被控制在一个可接受的范围内。[53]恰恰是在此关键问题上,无论是目前的法律界还是人工智能界,都没有做好充分投入的准备。因此,未来我们不仅要从法律人工智能的角度系统培养相关的专门人才,还要推动法律人士与技术人士在知识结构上的深度融合。或许只有当法律人与技术人紧密结合,相互理解,充分获知对方的需求与期待并实际解决法律与技术运用中的实践难题时,才是法律人工智能在法律界大展拳脚的时刻。

  

   【注释】 国家2011协同创新研究计划“司法文明协同创新中心”、四川大学法学院教授,法学博士。

   感谢洪凌啸同学、郭松副教授、朱奎彬副教授对本文提出的宝贵意见。

   [1] 比如,在中国,以BAT为代表的互联网公司纷纷宣称要转型成为人工智能企业。李彦宏称“互联网是前菜,人工智能才是主菜”,“百度公司将不再是互联网公司,而是一家人工智能公司”。李彦宏:“未来百度不是互联网公司而是人工智能公司”,网易科技2017年5月27日报道,载http://tech.163.com/17/0527/08/CLE8VI5H00097U80.html,最后访问时间:2018年3月3日;马化腾称“人工智能近两年成为全球投资者关注的热点,吸引许多资金投入,腾讯也十分看重该领域的发展,预计人工智能将成为未来业内的核心竞争力”。马化腾:“人工智能将成未来业内核心竞争力”,新华社2017年3月23日报道,载http://news.xinhuanet.com/2017-03/23/c_129515907.htm,最后访问时间:2018年3月3日;马云称“我相信人工智能,还有数据。在未来30年的时间里,我觉得最好的CEO应该是ET,就是一台超级计算机”。马云:“30年后翻天地覆人工智能引领未来”,中国青年报2016年10月14日报道,载http://hebei.ifeng.com/a/20161014/5055780_0.shtml,最后访问时间:2018年3月3日。中国政府在2017年的“两会”上明确提出,“加快培育壮大新兴产业,全面实施战略性新兴产业发展规划,加快新材料、人工智能、集成电路、生物制药、第五代移动通信等技术研发和转化,做大做强产业集群。”“政府工作报告——2017年3月5日在第十二届全国人民代表大会第五次会议上”,载http://www.gov.cn/premier/2017-03/16/content_5177940.htm,最后访问时间:2018年3月3日。

   [2] See Rory Cellan-Jones, The robot lawyers are here-and they’re winning,载http://www.bbc.com/news/technology-41829534,最后访问时间:2018年3月3日。

   [3] See Mohammad Raihanul Islam, K.S.M.Tozammel Hossain, Siddharth Krishnan, What AI can tell us about the U.S.Supreme Court?载https://theconversation.com/what-ai-can-tell-us-about-the-u-s-supreme-court-55352,最后访问时间:2018年3月3日。

   [4] See Katz DM, Bommarito MJ II, Blackman J (2017) A general approach for predicting the behavior of the Supreme Court of the United States. PLoS ONE 12(4): e0174698.载https://doi.org/10.1371/journal.pone.0174698,最后访问时间:2018年3月3日。

   [5] See Valerie Chan, Lex Machina Expands its Award-Winning Legal Analytics Platform to Commercial Litigation,载https://lexmachina.com/media/press/lex-machina-expands-its-award-winning-legal-analytics-platform-to-commercial-litigation/,最后访问时间:2018年3月3日。

   [6] 2016年11月24日,英国《卫报》报道,伦敦大学学院(UCL)、谢菲尔德大学和宾夕法尼亚大学的科学家表示,人工智能已经可以分析法律证据与道德问题,进而预测审判结果。在研究中,人工智能程序分析所有信息,并提出自己的司法判决。在其中79%的案子里,人工智能提出的判决与当时的法庭判决一致。See Artificial intelligence ‘judge’ developed by UCL computer scientists,载https://www.theguardian.com/technology/2016/oct/24/artificial-intelligence-judge-university-college-london-computer-scientists,最后访问时间:2018年3月3日。

   [7] See Bruce G.Buchanand & Thomas E.Headrickr, Some Speculation about Artificial Intelligence and Legal Reasoning,23 Stan.L.Rev.40.

   [8] See Anthony D’Amato, Can/Should Computers Replace Judges,11 Ga.L.Rev.1277(1977).

   [9] See JC Smith, Machine Intelligence And Legal Reasoning, Chicago-Kent Law Review (1998).

   [10] See Michael Mills, Using AI in Law Practice: It’s Practical Now,42 Law Prac.48,51(2016).

   [11] 参见〔美〕埃里克•布林约尔松、〔美〕安德鲁•麦卡菲:“人工智能概览”,《哈佛商业评论中文版》2017年10月,第58页。

   [12] 参见〔美〕凯西•欧尼尔:《大数据的傲慢与偏见:一个圈内数学家对演算法霸权的警告与揭发》,许瑞宋译,(台湾地区)大写出版社2017年版,第104页。

   [13] See Kali Holloway, AlterNet, Software Is Deciding How Long People Spend in Jail,载https://www.truthdig.com/articles/software-deciding-long-people-spend-jail/,最后访问时间:2018年3月3日。

   [14] See Christopher Slobogin, Risk Assessment, The Oxford Handbook Of Sentencing And Corrections, Oxford Universiry Press, pp.196,203~205(Joan Petersilia & Kevin R.Reitz eds.,2012).at 200.

   [15] 同上,at 204。

   [16] 同上,at 200。

   [17] See Walton, David J., Litigation and Trial Practice in the Era of Big Data,41 Litig.55,55.

   [18] See Bennett Moses, Lyria and Chan, Janet, Using Big Data for Legal and Law Enforcement Decisions: Testing the New Tools. University of New South Wales Law Journal, Vol.37, No.2,2014, pp.643~678.

   [19] See Jeff Larson, Surya Mattu,Lauren Kirchner and Julia Angwin, How We Analyzed the COMPAS Recidivism Algorithm,载https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm,最后访问时间:2018年3月3日。

   [20] See Michelle Liu, Supreme Court refuses to hear Wisconsin predictive crime assessment case,载https://www.jsonline.com/story/news/crime/2017/06/26/supreme-court-refuses-hear-wisconsin-predictive-crime-assessment-case/428240001/,最后访问时间:2018年3月3日。

[21] 分别参见吴汉东:“人工智能时代的制度安排与法律规制”、易继明:“人工智能创作物是作品吗?”、王迁:“论人工智能生成的内容在著作权法中的定性”、梁志文:“论人工智能创造物的法律保护”、司晓、曹建峰:“论人工智能的民事责任:以自动驾驶汽车和智能机器人为切入点”,《法律科学》2017年第5期,(点击此处阅读下一页)

    进入专题: 法律人工智能   法律数据  

本文责编:陈冬冬
发信站:爱思想(http://www.aisixiang.com),栏目:天益学术 > 法学 > 理论法学
本文链接:http://www.aisixiang.com/data/109873.html

1 推荐

在方框中输入电子邮件地址,多个邮件之间用半角逗号(,)分隔。

爱思想(aisixiang.com)网站为公益纯学术网站,旨在推动学术繁荣、塑造社会精神。
凡本网首发及经作者授权但非首发的所有作品,版权归作者本人所有。网络转载请注明作者、出处并保持完整,纸媒转载请经本网或作者本人书面授权。
凡本网注明“来源:XXX(非爱思想网)”的作品,均转载自其它媒体,转载目的在于分享信息、助推思想传播,并不代表本网赞同其观点和对其真实性负责。若作者或版权人不愿被使用,请来函指出,本网即予改正。
Powered by aisixiang.com Copyright © 2021 by aisixiang.com All Rights Reserved 爱思想 京ICP备12007865号-1 京公网安备11010602120014号.
工业和信息化部备案管理系统