左卫民:关于法律人工智能在中国运用前景的若干思考

选择字号:   本文共阅读 2115 次 更新时间:2018-05-10 02:35:24

进入专题: 法律人工智能   法律数据  

左卫民  
法律人工智能才能在法律界大展拳脚。

  

三、中国应该如何运用法律人工智能


   不管我们接受还是不接受,在大数据时代,法律行业已经受到冲击并正在发生改变。正如维克托所言;“法律大数据以一种前所未有的方式,通过对海量法律数据进行分析,对法律问题进行预判,获得巨大价值的产品和服务,或得出新的认知、深刻的观点和主张。”[48]

   这必然改变传统法律行业的工作方式与竞争形态,并进而引发法律思维与研究方法的革命性变革。当大数据进一步结合自然语言分析能力、机器学习技术之后,所谓的法律人工智能呼之欲出。从某种意义上讲,传统手工作业式的法律行业走向现代的机器化作业似乎不可避免,法律作业方式的工业革命已经正在展开,并逐步向纵深延展。在此背景下,法律人工智能在中国的前景如何呢?中国又应该如何迎接法律人工智能时代的到来呢?

   (一)法律人工智能在中国的运用具有长期性与艰巨性

   我们处在一个“巨头齐聚、资本介入、民众法律意识不断提高的时代”,[49] “大数据”与“互联网+”的结合使得各路人马与多种资本纷纷进入法律行业。一时间法律大数据、法律人工智能成为炙手可热的话题,各种冠以类似名称的法律产品也充斥着市场,甚至部分产品已经进入了法律服务领域和司法裁判活动之中。在笔者看来,这些热闹的现象并不表明中国已经进入了法律人工智能时代,更不意味着市场已经有了成熟的法律人工智能产品。恰恰相反,法律人工智能在中国的运用将是一个长期的过程,并将面临艰巨的挑战。这是由如下因素所决定的。

   其一,社会是否接受“机器人法官”。必须指出,法律决策本质上属于一种人类专家决策,这与依数据而决策迥然不同,规律各异。法律经验经由开放的辩论与经年的累积而达至,并以当事人与社会可接受的方式表述。然而,人工智能是一种由机器(尽管人在其中操控)分析数据,基于数据关联性而构建的“另类”的客观化、科学化的决策模式。很多时候,机器归纳的裁判模式可能连操控主体也难以理解,就如人类时常无法理解“阿尔法狗”的围棋招式一样。在法律专家系统与数据分析系统所得出的结果不一致时,人类是否选择相信机器,这是一个大问题。如果人类选择不相信,那么期待中的“阿尔法法官”不会降临。实际上,在中国司法的公信力较低、法官可能会被怀疑时,“机器人法官”会什么样?很难想象算法低效且不透明的机器裁判会更受拥戴。所以,在中国,法律人工智能在长时间内可能只是一种辅助性、参考性的工具,为法官、检察官、律师等法律人提供行动参考。

   其二,人类法官优秀经验的归纳尚待时日,更不要说超越了。整体上,目前没有充分成熟的算法与相对成功的机器裁判与预测模式。尚处于萌芽阶段的法律人工智能是一个长期且极为耗费资源、需要更多既懂法律又懂人工智能的双面人才加入的领域与行业。法律人工智能仍属一种统计型、经验型、材料准备型、文字模板型的弱人工智能,低效且适用范围窄。如果说类似“阿尔法狗”的强人工智能是以模仿人、超越人为目标,并已在诸如象棋、围棋、电子游戏、无人驾驶等领域实现了超越人类目标的话,法律人工智能更像嗷嗷待哺的婴儿,期盼着优秀数据、优秀人工的加入与投喂。特别要指出,由于法律人工智能在算法上采取了知识图谱的半监督学习方式,这种方式的显著特点即是“有多少人工方有多少智能”,只有在前期通过法律专家对法律规范以及法律案例的归纳、总结,将其转换为结点—边—节点的表示知识和事实的陈述语句,方能实现某一法律要素式审判的突破。且不说法律专家对特别类型法律知识的审判要素与知识图谱的总结是否正确,仅在处理、应对法律领域在法律知识上越来越精细化划分的趋势,就需要大量的资源。可以说,数据化的法律规范、案例与相关知识正处于爆炸式的增长态势。这种工作量用“浩如烟海”来形容一点也不为过,每一点法律知识图谱的构建完成、每一步法律人工智能的前进都需要付出难以想象的艰辛。

   值得注意的是,目前市场上的绝大多数甚至可以说几乎所有人工智能产品的开发者都未能很好地解决如何表示法律、总结法律、阐释法律的难题。并且,在机器学习的对象、所被喂养的数据上,也没有解决数据质量不佳的问题。现有的学习对象既不是质量优秀的判决书,也不是全部的法律判决书;既不是全样本,也不是部分样本中的优秀样本;既不代表法律数据的全体水平,也不代表法律数据中的高水平。就此而言,在当下技术开发者对人类法官经验的选择尚无力区分时,我们无法判别何为优秀的裁判文书、何为优秀的裁判标准。在裁判文书水平尚属良莠不齐的今天,我们还无法自信地说机器学习的裁判文书都是优秀的文书,我们也无法期待在此基础上形成的裁判模型必然得出准确的结论。

   需要指出,尽管人工智能被誉为新时期的“电”与“蒸汽机”,能够为旧产业提供新动力、新思路,但人工智能这一工具并非轻易能够为旧有行业的人们所掌握与使用。由于法律专家对人工智能技术掌握不够,因此并不清楚如何用技术上合适的方式来表达、显示法律,甚至法律专家本身也没有充分地基于法律数据和裁判文书等信息来把握、认识法律的现状和规律性的裁判因素。从这个角度而言,“多人工就多智能,少人工就少智能,没人工就没智能,优秀人工就有优秀智能,垃圾人工就有垃圾智能”确实已成为法律人工智能能否有效运用的基本操作方式,甚至有了优秀人工也未必就有优秀智能。然而,目前各界似乎并未意识到法律人工智能开发的长期性与艰巨性。在已有甚至未有的法律人工智能层出不穷的当下,我们甚至担心这种一哄而上向钱看的法律人工智能浪潮会“欲速而不达”,反使真正的法律人工智能产品运用前景受到破坏。

   中国需要法律人工智能,更需要优秀的法律人工智能,而这一产品需要时间、资本、人力、尤其是优秀的、既擅长人工智能技术(计算机科学、统计学)又精通法律知识的双栖人才的长时间、专注的投入与坚持,绝非一朝一夕可就。

   (二)明确法律人工智能可以运用的领域与条件

   对于人工智能而言,像“法律人那样思考”已经不再是一种愿景,更不是一种奢望。确实,只要有足够的数据量,再加上深度的机器学习与超强的自然语言学习能力,法律人工智能就可以高效地处理各种复杂的法律事务,甚至能够得出与优秀法律人一样的判断。尽管如此,但在笔者看来,这并不表明法律人工智能就能不分领域与场合适用于所有法律事务,法律人工智同样存在适用范围的限制。

   其一,法律人工智能应定位于做辅助法律人决策的助手与“参谋”角色。这既是由人类(包括法律人与公众)对法律职业的认知所决定,也是由人工智能自身的不足所决定。从根本上讲,人工智能尚未在法律的核心领域显示其高于人类的能力。因此,它适宜作为法官裁判的助手而非完全替代法官。从提高工作效率的角度,未来更多应将其运用于处理技术性、辅助性的工作,如法庭记录、材料搜索与推送,裁判文书的制作等。但即使如此,也不要低估法律人工智能做好辅助性事务工作的难度,如语言转换。

   其二,法律人工智能可以多用于私主体。在法律事务中,法律人工智能的适用与否由公民个人、公司或其律师决定更为适宜,如当事人借助法律人工智能选择律师,律所主任进行律所管理、律师起草与审查合同、律师借助法律人工智能预测案件结果等。之所以强调法律人工智能的使用决定应由私主体做出,首先是因为法律事务结果的好坏影响当事人,因此必须充分保障其意思自治。一旦由公权力决定是否使用法律人工智能,如果出现争议或与人工智能预期不符,很可能会引发进一步冲突。其次,公权力的行使要求一定透明性,而法律人工智能的算法却具有相当的“黑箱性”,其或者因为深度学习算法的运用而无法言明计算的过程与内容,或者由于算法商业机密与知识产权的考虑而不对外公开,这天然地与公权力行使的透明性与规则的公开性相悖。

   其三,法律人工智能应多适用于非裁判性事务。法律人工智能应更多用于诸如合同的审查、起草等非诉事务,较少用于预测裁判等诉讼事务。这是因为,相对非诉讼事务而言,诉讼是一个开放的过程,信息众多繁杂且真假难辨,在这样的场景中,呈现于法庭之上的案件事实只是真实客观事实的一角,法官需要通过残缺的信息做出判断、决策。同时,法官的判决结果还会受到多方面的影响,有时甚至是社会性、情感性因素的影响。因此,在这种开放而非封闭的裁判场合下,信息时时流动且变化,这是一种信息非充分条件下的博弈,不同于围棋这种信息充分、公开的充分博弈。不久前,人类选手在信息不充分的星际争霸游戏中以四比零的比分横扫人工智能的事例,[50]也从侧面证明信息不充分的场合可能并不适合人工智能“施展拳脚”。

   其四,在法律人工智能预测或辅助裁判方面,应该注意以下几点。首先,法律人工智能应适用于简单、明确的案件。如同阿法狗适用于围棋这样规则清楚、边界明确、信息充分的场域,却至今未能击败信息不完全条件下人机互动的电脑游戏高手一样,法律人工智能的运用领域应当是信息客观性强、事实清楚、证据客观真实的简单案件,而对复杂、模糊案件的裁判仍需倚重法官们的专业智慧。具体而言,在民事案件中,像保险类纠纷、网络支付纠纷、网上金融交易纠纷、小额借贷纠纷、劳动争议纠纷、交通事故纠纷、婚姻继承纠纷等这些案情相对简单、证据较为客观的纠纷,人工智能有着较好的运用前景;在刑事案件领域,盗窃、抢劫、酒驾等简单的案件较为适合适用人工智能,职务犯罪,杀人、故意伤害等恶性案件由于需要对证据进行更为仔细的甄别,再加上每个案件都有其特殊性,因此对人工智能的适用需要谨慎;在行政案件领域,法律人工智能可以适用于案件事实清楚、争议不大、可以适用简易程序审理的行政诉讼类案件,如应当以不属于行政诉讼受案范围、不具有原告主体资格、超过法定起诉期限以及不符合其他受理条件等理由裁定驳回起诉的案件。其次,适用于民商事应多于刑事、行政案件。比较而言,法律人工智能可能更适合民商事法律纠纷的处理。这是因为民商事案件的信息资源更为丰富、充分、准确与真实,尤其是在在诉讼两造的激烈对抗下,法律信息往往可以得到充分披露与展现,而相对而言,刑事以及行政诉讼呈现“弱对抗”甚至“无对抗”的状态,从而使得法律信息的充分性无法保障,真实性也存疑。

   (三)需要在法律人工智能开发的技术层面推进改革

   如前所述,中国目前人工智能的开发与运用在技术层面还存在不少问题,尤其是算法和人才的问题可能构成了法律人工智能在中国成长与运用的最大现实障碍与瓶颈。有鉴于此,在中国推进法律人工智能,除了要明确上述两个认知层面的问题之外,还需要在技术层面采取有针对性的完善措施。

第一,算法的改进。对于算法问题,首先要考虑的问题是提高算法的准确性与科学性,探索契合中国法律实践的算法。对于任何人工智能而言,算法都处于异常关键的位置,法律人工智能同样如此。一方面,应注意算法的准确性。如果在实践中贸然使用准确性欠佳的算法,我们最终很有可能只是发现一个“未拟合”即不正确的决策模型。这样的人工智能毫无意义,反而还会干扰正常的司法决策。另一方面,我们还需要注意算法的科学性。有时候,准确性并不意味着一切,太过准确甚至是一种变相的错误,即我们还会发现一个“过拟合”的司法决策模型。也就是说,我们通过机器学习发现的司法规律可能比法律专家所熟悉的规则更为复杂,它们将包含不同的元素,它们的相关性可能不会立即显现出来。[51]其次,注意算法使用的透明性。从当前所使用的主流算法看,深度学习无法做到算法的透明性。(点击此处阅读下一页)

    进入专题: 法律人工智能   法律数据  

本文责编:陈冬冬
发信站:爱思想(http://www.aisixiang.com),栏目:天益学术 > 法学 > 理论法学
本文链接:http://www.aisixiang.com/data/109873.html

1 推荐

在方框中输入电子邮件地址,多个邮件之间用半角逗号(,)分隔。

爱思想(aisixiang.com)网站为公益纯学术网站,旨在推动学术繁荣、塑造社会精神。
凡本网首发及经作者授权但非首发的所有作品,版权归作者本人所有。网络转载请注明作者、出处并保持完整,纸媒转载请经本网或作者本人书面授权。
凡本网注明“来源:XXX(非爱思想网)”的作品,均转载自其它媒体,转载目的在于分享信息、助推思想传播,并不代表本网赞同其观点和对其真实性负责。若作者或版权人不愿被使用,请来函指出,本网即予改正。
Powered by aisixiang.com Copyright © 2021 by aisixiang.com All Rights Reserved 爱思想 京ICP备12007865号-1 京公网安备11010602120014号.
工业和信息化部备案管理系统