沈岿:数据治理与软法

选择字号:   本文共阅读 154 次 更新时间:2020-05-01 23:21:03

进入专题: 数据治理   软法    

沈岿 (进入专栏)  

   摘要:  “数据治理”起源于企业对其生成和获得的数据进行提高其质量、促进其有效利用的治理。之后,“数据治理”指向基于数据应用的公共治理。政府可以利用数据提升治理水平,企业、社会组织等也可以利用数据参与公共治理。制定规则是数据治理不可或缺的一项重要任务。由于“对数据治理”和“用数据治理”的普遍存在,以及组织之间可能需要的在两个维度上的合作,完全有必要通过软法性质的规则去引导组织自身的“对数据治理”,以及组织或组织之间的“用数据治理”。数据治理的普遍性、技术性、复杂性和应时性,决定了其对软法有着非常大的需求。

   关键词:  数据 数据治理 软法 软硬法混合治理

   我们生活在一个计算机时代、互联网时代,这似乎已经是无须多言的事实。然而,并不是所有人都清楚“计算机栖居”“网络栖居”会给我们带来什么。

   我们已经习惯于在网上购买食品、药品,在网上下单购买所需书籍,在网上订购机票、火车票,在网上与客服沟通,在网上与认识的或即将认识的人聊天,在网上浏览新闻、收集信息。可是,我们并没有完全清晰地意识到,所有这些网上行为所产生的数据都已经以数字化的形式存储在网络中了。如果这些数据得以收集、集成、分析,那么,我们喜欢吃什么,有哪些常见小病,偏爱读什么书,何年何月何日曾经去过什么地方,待人接物的方式是什么,有哪些朋友,关注些什么话题,喜爱哪些电影、电视剧、视频或图片,都会被一一挖掘出来,从而可以对我们做一个即便我们自己可能都没有做过的立体画像(portrait)。或许,你可以选择逃离网络,去商场、超市、药店、书店、报纸杂志零售点,由此减少与你个人生活挂钩的数据生成的机会。可是,除非你完全使用现金,一旦你使用微信、支付宝或信用卡,你试图“摆脱留痕”的努力基本是前功尽弃。而你多半不会愿意自己成为时代的弃儿,去追求老古董式的生活。

   数据不仅可以用来完成“历史画像”,而且,因为数据中隐含着规律性,对数据的深度分析有助于预测未来趋势。[1]当我们早上起来后,手机助手会提醒,还有多长时间可以到我们所在的单位;当我们在网上浏览的时候,时常会遇到弹出的广告页面,恰好与自己最近的购物兴趣有关;当我们查看电子邮箱时,可能还会发现曾经去过的博物馆、剧院或房产中介给我们推送的展览、演出或房源信息。

   这些正在发生的事情,让我们感受到了信息技术的力量,感受到了生活内容和方式的革命性变化,感受到了个性化定制的普遍发生和前所未有的便捷,但仔细琢磨,我们又同时产生了不少的担心和害怕。数据对人类的全方位且不断加深的渗透,如同历史上发生的任何一次技术革命一样,都会冲击革命前形成的、基本稳定的、人们安之若素的利益格局,形成双刃剑的效果。相同的逻辑和问题会再次发生:如何利用其好的一面,如何遏制其坏的一面。于是,“数据治理”(data governance)很快成为一个热门话题,并带动了与此相关的规则探索。毕竟,对任何事物的有效利用和遏制,都离不开相对周密、完善且具有高度针对性、匹配性的规则。本文试图从数据治理的自身使命、工作特性以及最佳实践中,发现软法在其中扮演的、作用丝毫不亚于硬法的重要角色。

  

   一、数据治理的理论界定

  

   “数据治理”虽然是一个热词,可并没有形成统一的定义。有人或许会问:数据治理到底是治理数据,还是利用数据进行治理?仅从语词构成的表面上看,两种解读都是有可能的,但答案其实并非简单的二选一。

   (一)数据治理内涵的不同观点

   根据维基百科,“数据治理”用于宏观和微观两个层面。前者是一个政治(politics)概念,是国际关系和互联网治理的组成部分;后者是一个管理(management)概念,是公司治理的组成部分。在宏观层面,数据治理指向各国对跨境数据流动的治理,所以应更加准确地称之为国际数据治理。这一新的领域包括“治理各类数据的规范、原则和规则”。在微观层面,数据治理指向数据管理,其关心的是组织有能力确保数据在完整生命周期中具有高质量。企业数据治理的焦点包括可得性、可用性、一致性、完整性、安全性,包括建立流程以确保在整个企业中进行有效的数据管理。[2]

   成立于2003年的“数据治理研究所”(Data Governance Institute, DGI),旨在为全球提供深度的、中立的数据治理最佳实践(best practices)和指引。该机构2004年提出的《DGI数据治理框架》(以下简称《DGI框架》)已经为全球数百个组织所应用。[3]这一框架对数据治理给出了简单和复杂的两种定义。简单定义是:数据治理是对数据相关事项进行决策和行使权力。复杂定义是:数据治理是对信息相关过程进行决策的权利和责任系统,该系统按照已经取得共识的模型执行,模型描述的是谁在什么时候、什么情况下、使用什么方法对什么信息采取什么行动。[4]按此定义,对与数据有关的事项作出决策、采取行动以及相应的体系,都在数据治理的范畴之内,无论决策或行动的主体是谁。

   英国人文和社会科学院(British Academy)和英国皇家学会(Royal Society)2017年发布的联合报告《数据管理和使用:21世纪的治理》(Data Management and Use:Governance in the 21st Century)使用的“数据治理”一词,就是指向“对数据管理和数据使用的治理”,为了提升对数据管理、数据使用以及衍生技术的信任而设计出来的任何事物,都属于该报告所关注的数据治理。[5]

   美国俄克拉荷马州管理和企业服务办公室(Office of Management & Enterprise Services, OMES)的数据治理项目办公室,于2019年4月17日发布的《数据治理概览》(Data Governance Overview)报告指出,数据治理是一个组织过程和结构。它建立对数据的责任,组织工作人员通过系统地创建和实施政策、角色、职责和程序来协作并持续地改进数据质量。因此,它是用来定义关于数据的决策过程的,指向一个战略性的长期过程,通常出现在达到相当成熟水准的组织里。它为管理、使用、改进和保护组织信息的过程增加了严谨性和纪律性。高效的数据治理可以促进跨组织协作和结构化决策,进而提高数据的质量、可用性和完整性。[6]

   应当指出,虽然维基百科把微观层面上的数据治理等同于数据管理,但在一些研究者看来,二者还是存在差异的。数据治理是政策、程序、结构、角色和责任的组织与实施,旨在为有效管理信息资产,提供和实施有关参与、决策和责任的规则。无论如何定义,底线在于数据治理是运用权力和政策,确保信息资产的妥善管理。因此,数据治理不是由信息管理人员承担的职能。数据治理确定必需的控制、政策和过程,并制定规则,而信息管理人员负责执行这些规则。[7]类似地,国内有观点认为,数据治理明确战略方针、组织架构、政策和过程,并制定规则和规范,来评估、指导和监督数据管理;数据管理则是通过计划、建设、运营和监控相关方针、活动和项目,以获取、控制、保护、交付和提高数据资产价值来实现数据治理所作的决策,并向数据治理提供相应的反馈。[8]

   其实,若是从角色、职能分工而言,对二者加以区分是合理的。但数据治理既然是对数据管理和使用的治理,目的之一是确保数据的有效管理,因此,数据管理就是数据治理的有机组成部分,尽管二者之间绝对不能划等号。故有论者指出:“数据治理是围绕数据资产展开的系列工作,以服务组织各层决策为目标,涉及有关数据管理的技术、过程、标准和政策的集合。”[9]

   (二)数据治理的多层次意涵

   以上并未穷尽也不可能穷尽所有关于数据治理的定义,只是管中窥豹。可以看出,各种定义虽然表述不同,但指向的基本都是对数据及其管理和使用的治理,甚至最广义的可以指向所有与数据有关的决策和行动及对这种决策和行动过程的治理。在数据治理这个概念最先出现的时候,这个决策和行动的主体更多是指企业,“数据治理最早被企业所重视”[10],“源于企业对数据资产的治理”[11]。然而,数据尤其是大数据的利用,不仅可以为企业创造无限的商业价值,而且在政府对经济、社会、环境等公共事务的治理中,也同样有其巨大的用武之地。于是,政府数据治理观念应运而生。

   政府数据治理又有不同层次上的意涵。首先,政府如企业一样,需要对其在行政管理和服务过程中产生和使用的数据进行治理,以维护数据质量,保证数据安全。其次,政府应当充分利用数据和数据分析,为其决策和行动提供支撑,提升其治理能力和水平。这就是前文提及的基于数据、利用数据的治理。第三,政府应当对政府数据资源的对外共享和开放利用加强治理,以促进企业和社会乃至个人,利用安全可靠的政府数据,参与公共治理。治理(governance)不同于统治(government),其主体不限于政府,各种公共和私人机构行使权力得到公众认可,就能成为各个层面上的权力中心。[12]政府数据资源的开放利用可以促成各方主体的智慧决策,更有助于善治的形成。如第三方机构利用和分析开放的政府数据,形成对企业的信用等级评价或认证。第四,在更为宏观的层次上,政府对数据产业、数据经济乃至整个社会数据化过程进行全方位的、引领式的治理,如国家数据战略。[13]由于企业并没有政府那样的治理之责,故狭义的数据治理很少有以上后三个层次的含义。

   综上,回到之前提及的问题,本文所用的“数据治理”概念是最广意义上的。简单说,既包括对数据的治理,也指向利用数据进行治理。[14]而且,二者经常是相互交织的。政府、企业、社会组织等都需要对其产生、获取的数据进行有效管理和利用,这种需要是大数据时代的应时而为,而非任何法律所强制。政府可以利用数据提升治理水平,企业、社会组织等也可以利用数据参与公共治理。但是,数据的有效管理和利用,都需要一套相适应的、由不同规范构成的制度体系,这就是对数据及其管理和利用进行的治理。没有对数据的良好治理,就不会有基于数据的良好决策,包括企业、社会组织乃至政府的各自决策,更无法利用数据对经济、社会、环境等进行良好治理。

  

   二、数据治理的目标及规则任务

  

   在如此广义的数据治理概念之下,讨论数据治理的目标,是有相当难度的。毕竟,两个关联的维度——对数据治理和用数据治理——都各有其不同的使命。更何况,即便在其中任何一个维度,又有许多更加具体化、特定化的需求。不过,对多维度、多领域数据治理的复杂性了解越多,就越能意识和理解软法在其中可能发挥的重要作用。

   (一)数据治理的第一个维度:对数据的治理

首先,在第一个维度,政府、企业、社会机构等不同形式的组织,都有对其产生、获得的数据进行治理的需要。之所以如此,是因为数据或多或少会面临以下主要问题:(1)数据不完整。缺少关键基础数据,部分辅助数据缺失或不全面,历史数据丢失严重。(2)数据分散、不一致。组织——尤其是略具规模的组织——内部数据入口众多,同一类数据采用的标准、规则不一致。(3)数据质量低。大量数据“堆积”在一起,集成数据的可用性差。(4)数据共享集成成本高。数据标准不统一、分散,数据核对、清理、映射的工作量巨大,导致共享集成数据和数据分析的成本非常高。(5)数据效益不显著。数据决策分析的结果可靠性差,投入与产出不匹配,(点击此处阅读下一页)

进入 沈岿 的专栏     进入专题: 数据治理   软法    

本文责编:陈冬冬
发信站:爱思想(http://www.aisixiang.com),栏目:天益学术 > 法学 > 理论法学
本文链接:http://www.aisixiang.com/data/121130.html

0 推荐

在方框中输入电子邮件地址,多个邮件之间用半角逗号(,)分隔。

爱思想(aisixiang.com)网站为公益纯学术网站,旨在推动学术繁荣、塑造社会精神。
凡本网首发及经作者授权但非首发的所有作品,版权归作者本人所有。网络转载请注明作者、出处并保持完整,纸媒转载请经本网或作者本人书面授权。
凡本网注明“来源:XXX(非爱思想网)”的作品,均转载自其它媒体,转载目的在于分享信息、助推思想传播,并不代表本网赞同其观点和对其真实性负责。若作者或版权人不愿被使用,请来函指出,本网即予改正。
Powered by aisixiang.com Copyright © 2020 by aisixiang.com All Rights Reserved 爱思想 京ICP备12007865号 京公网安备11010602120014号.
工业和信息化部备案管理系统